Improved Density Estimators for Invertible Linear Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Density Estimators for Invertible Linear Processes

ABSTRACT The stationary density of a centered invertible linear processes can be represented as a convolution of innovation-based densities, and it can be estimated at the parametric rate by plugging residual-based kernel estimators into the convolution representation. We have shown elsewhere that a functional central limit theorem holds both in the space of continuous functions vanishing at in...

متن کامل

Uniformly Root-n Consistent Density Estimators for Weakly Dependent Invertible Linear Processes

Convergence rates of kernel density estimators for stationary time series are well studied. For invertible linear processes, we construct a new density estimator that converges, in the supremum norm, at the better, parametric, rate n. Our estimator is a convolution of two different residual-based kernel estimators. We obtain in particular convergence rates for such residual-based kernel estimat...

متن کامل

Prediction in invertible linear processes

We construct root-n consistent plug-in estimators for conditional expectations of the form E(h(Xn+1, . . . , Xn+m)|X1, . . . , Xn) in invertible linear processes. More specifically, we prove a Bahadur type representation for such estimators, uniformly over certain classes of not necessarily bounded functions h. We obtain in particular a uniformly root-n consistent estimator for the m-dimensiona...

متن کامل

Density Estimators for Truncated Dependent Data

In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Statistics - Theory and Methods

سال: 2009

ISSN: 0361-0926,1532-415X

DOI: 10.1080/03610920902947592